A study of the alanine dosimeter irradiation temperature coefficient from 25 to 80°C

نویسندگان

  • M. F. Desrosiers
  • M. Peters
  • J. M. Puhl
چکیده

The response of high-dose-range chemical dosimeters is dependent on the dosimeter temperature during irradiation. Typically, irradiation temperatures are estimated by measurements, calculations, or some combination of the two. Then using the temperature coefficient for the dosimetry system, the dosimeter response is adjusted or corrected to be consistent with the irradiation temperature for the calibration curve. Consequently, the estimation of irradiation temperature and the response correction via the temperature coefficient are sources of uncertainty in industrial dosimetry. To date, studies of dosimetry system performance at high temperatures have been limited. The maximum irradiation temperature for temperature coefficient studies of commercial alanine dosimeter formulations has not exceeded 50 1C. However, high-energy electron-beam processing can expose dosimeters to temperatures as high as 70 1C. This study aims to examine the temperature coefficient above 50 1C and assess the accuracy of the dosimeter response corrections. The findings reveal small but significant deviations from linearity above 70 1C. The magnitude of this deviation and its implications to dosimetry measurements will be discussed. Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Harwell & FWT Alanine Temperature Coefficients from 25 °C to 80 °C

The dosimeters used to monitor industrial irradiation processing commonly experience significant temperature rises that must be considered in the dose analysis stage. The irradiation-temperature coefficient for a dosimetry system is derived from the dosimeter's radiation response to the absorbed dose and the irradiation temperature. This temperature coefficient is typically expressed in percent...

متن کامل

The impact of irradiation temperature estimations on the accuracy of dosimetry

Quality-control dosimetry is important to the routine operation of a radiation processing facility. For many applications this dosimetry must be traceable to a national primary standard. After irradiation at an industrial facility, National Institute of Standards and Technology (NIST)-supplied transfer dosimeters are certified by measurement and dose interpolation from the NIST calibration curv...

متن کامل

Experimental evaluation of thermal stability of PS- MWCNT nanocomposite as a real-time dosimeter

Introduction: Carbon nanotubes (CNTs) are ideal reinforcing fillers for a polymer matrix, because of their nanometer size, high aspect ratio and, more importantly, their excellent mechanical strength, and electrical and thermal conductivity. The CNTs are categorized into two groups: SWCNT and MWCNT. MWCNTs would have diameters ranging from 2 to 100 nm and lengths of up to tens ...

متن کامل

Determine the Dose Distribution Using Ultrasound Parameters in MAGIC-f Polymer Gels

In this study, using methacrylic and ascorbic acid in gelatin initiated by copper (MAGIC-f) polymer gel after megavoltage energy exposure, the sensitivity of the ultrasound velocity and attenuation coefficient dose-dependent parameters was evaluated. The MAGIC-f polymer gel was irradiated under 1.25 MeV cobalt-60, ranging from 0 to 60 Gy in 2-Gy steps, and received dose uniformity and accuracy ...

متن کامل

The Ability of Ultrasonic Characterization to Extract the Dose Distribution of MAGIC-f Polymer Gel

Background & Aims: Today, different imaging techniques have been studied in the reading of radiationsensitive polymer gels dosage. Due to limitations of imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT), ultrasound techniques are proposed for dose-dependent parameter extraction. In this study, using MAGIC-f (methacrylic and ascorbic acid in gelatin initiat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009